Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3113, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600097

RESUMEN

Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.


Asunto(s)
Neuronas , Proteómica , Ratones , Animales , Humanos , Neuronas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Autofagia/fisiología , Homeostasis
2.
Cell Rep ; 39(9): 110877, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649373

RESUMEN

Genome-wide association studies (GWASs) have identified hundreds of loci associated with psychiatric diseases, yet there is a lack of understanding of disease pathophysiology. Common risk variants can shed light on the underlying molecular mechanisms; however, identifying causal variants remains challenging. We map cis-regulatory elements in human neurons derived from pluripotent stem cells. This system allows us to determine enhancers that activate the transcription of neuronal activity-regulated gene programs, which are thought to be critical for synaptic plasticity and are not possible to identify from postmortem tissues. Using the activity-by-contact model, we create variant-to-gene maps to interpret the function of GWAS variants. Our work nominates a subset of variants to elucidate the molecular mechanisms involving GWAS-significant loci. It also highlights that in vitro human cellular models are a powerful platform for identifying and mechanistic studies of human trait-associated genetic variants in cell states that are inaccessible from other types of human samples.


Asunto(s)
Estudio de Asociación del Genoma Completo , Trastornos Mentales , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
3.
Cell Stem Cell ; 26(2): 234-250.e7, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32032525

RESUMEN

Mouse embryonic stem cells (ESCs) sporadically express preimplantation two-cell-stage (2C) transcripts, including MERVL endogenous retrovirus and Zscan4 cluster genes. Such 2C-like cells (2CLCs) can contribute to both embryonic and extraembryonic tissues when reintroduced into early embryos, although the molecular mechanism underlying such an expanded 2CLC potency remains elusive. We examine global nucleosome occupancy and gene expression in 2CLCs and identified miR-344 as the noncoding molecule that positively controls 2CLC potency. We find that activation of endogenous MERVL or miR-344-2 alone is sufficient to induce 2CLCs with activation of 2C genes and an expanded potency. Mechanistically, miR-344 is activated by DUX and post-transcriptionally represses ZMYM2 and its partner LSD1, and ZMYM2 recruits LSD1/HDAC corepressor complex to MERVL LTR for transcriptional repression. Consistently, zygotic depletion of Zmym2 compromises the totipotency-to-pluripotency transition during early development. Our studies establish the previously unappreciated DUX-miR-344-Zmym2/Lsd1 axis that controls MERVL for expanded stem cell potency.


Asunto(s)
Retrovirus Endógenos , MicroARNs , Animales , Retrovirus Endógenos/genética , Ratones , MicroARNs/genética , Células Madre Embrionarias de Ratones , Cigoto
4.
Nat Genet ; 50(3): 443-451, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29483655

RESUMEN

Ten-eleven translocation (TET) proteins play key roles in the regulation of DNA-methylation status by oxidizing 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), which can both serve as a stable epigenetic mark and participate in active demethylation. Unlike the other members of the TET family, TET2 does not contain a DNA-binding domain, and it remains unclear how it is recruited to chromatin. Here we show that TET2 is recruited by the RNA-binding protein Paraspeckle component 1 (PSPC1) through transcriptionally active loci, including endogenous retroviruses (ERVs) whose long terminal repeats (LTRs) have been co-opted by mammalian genomes as stage- and tissue-specific transcriptional regulatory modules. We found that PSPC1 and TET2 contribute to ERVL and ERVL-associated gene regulation by both transcriptional repression via histone deacetylases and post-transcriptional destabilization of RNAs through 5hmC modification. Our findings provide evidence for a functional role of transcriptionally active ERVs as specific docking sites for RNA epigenetic modulation and gene regulation.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Retrovirus Endógenos/fisiología , Proteínas Nucleares/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/fisiología , Animales , Células Cultivadas , Cromatina/genética , Metilación de ADN , Dioxigenasas , Epigénesis Genética/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Unión Proteica
5.
Cell Rep ; 18(7): 1713-1726, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28199843

RESUMEN

Although SIN3A is required for the survival of early embryos and embryonic stem cells (ESCs), the role of SIN3A in the maintenance and establishment of pluripotency remains unclear. Here, we find that the SIN3A/HDAC corepressor complex maintains ESC pluripotency and promotes the generation of induced pluripotent stem cells (iPSCs). Members of the SIN3A/HDAC corepressor complex are enriched in an extended NANOG interactome and function in transcriptional coactivation in ESCs. We also identified a critical role for SIN3A and HDAC2 in efficient reprogramming of somatic cells. Mechanistically, NANOG and SIN3A co-occupy transcriptionally active pluripotency genes in ESCs and also co-localize extensively at their genome-wide targets in pre-iPSCs. Additionally, both factors are required to directly induce a synergistic transcriptional program wherein pluripotency genes are activated and reprogramming barrier genes are repressed. Our findings indicate a transcriptional regulatory role for a major HDAC-containing complex in promoting pluripotency.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Histona Desacetilasa 2/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Homeótica Nanog/metabolismo , Proteínas Represoras/metabolismo , Animales , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Genoma/genética , Células Madre Pluripotentes Inducidas/fisiología , Ratones , Complejo Correpresor Histona Desacetilasa y Sin3 , Transcripción Genética/genética
6.
Cell Stem Cell ; 19(3): 355-69, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27345836

RESUMEN

Pluripotency is increasingly recognized as a spectrum of cell states defined by their growth conditions. Although naive and primed pluripotency states have been characterized molecularly, our understanding of events regulating state acquisition is wanting. Here, we performed comparative RNA sequencing of mouse embryonic stem cells (ESCs) and defined a pluripotent cell fate (PCF) gene signature associated with acquisition of naive and primed pluripotency. We identify Zfp281 as a key transcriptional regulator for primed pluripotency that also functions as a barrier toward achieving naive pluripotency in both mouse and human ESCs. Mechanistically, Zfp281 interacts with Tet1, but not Tet2, and its direct transcriptional target, miR-302/367, to negatively regulate Tet2 expression to establish and maintain primed pluripotency. Conversely, ectopic Tet2 alone, but not Tet1, efficiently reprograms primed cells toward naive pluripotency. Our study reveals a molecular circuitry in which opposing functions of Tet1 and Tet2 control acquisition of alternative pluripotent states.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Linaje de la Célula/genética , Dioxigenasas , Epigénesis Genética , Perfilación de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/citología , Interferencia de ARN , Transcripción Genética
7.
Cell Stem Cell ; 16(6): 653-68, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25936917

RESUMEN

Super-enhancers (SEs) are large clusters of transcriptional enhancers that are co-occupied by multiple lineage-specific transcription factors driving expression of genes that define cell identity. In embryonic stem cells (ESCs), SEs are highly enriched for the core pluripotency factors Oct4, Sox2, and Nanog. In this study, we sought to dissect the molecular control mechanism of SE activity in pluripotency and reprogramming. Starting from a protein interaction network surrounding Sox2, we identified Tex10 as a key pluripotency factor that plays a functionally significant role in ESC self-renewal, early embryo development, and reprogramming. Tex10 is enriched at SEs in a Sox2-dependent manner and coordinates histone acetylation and DNA demethylation at SEs. Tex10 activity is also important for pluripotency and reprogramming in human cells. Our study therefore highlights Tex10 as a core component of the pluripotency network and sheds light on its role in epigenetic control of SE activity for cell fate determination.


Asunto(s)
Reprogramación Celular/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Proteínas Nucleares/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Autorrenovación de las Células , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/citología , Unión Proteica , ARN/genética , ARN/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...